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What is Android ?

● Android is a very cut-down mobile Linux 
distribution developed by Google Inc & co

● it uses a patched Linux kernel
● most of the usual GNU userspace is replaced by 

custom tools
● custom incompatible libc called Bionic
● very basic package management
● running on some ~500 million devices globally
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Android applications

● there are two basic ways types of Android applications 
Java based and NDK based

● Java based applications run on the Androids custom 
Dalvik Java VM and use Android specific Java classes
– they are not very portable

● NDK based applications are written in C/C++ with a slim 
Java wrapper for the UI
– many Android games are NDK based due to better 

performance

– Android uses a cut-down C library called Bionic, so porting 
libraries from other platforms might not be straightforward
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Android applications

● applications are distributed in the APK (Android 
PacKage) format
– which is just a zip package based on the JAR file format

– no support for cross package dependencies

● the main Android application repository is called Google 
Play
– but there are many third party ones, such as Fdroid, Samsung 

apps and others

● Android tries to maintain binary compatibility so that 
packaged applications should work across different 
Android devices and versions



6

● Python has been running on Android for ages
● the Qt graphics library has been available for 

Android since early 2011
● there have been some proof of concepts of 

Qt‑Python bindings working on Android
● and even some proof of concepts of distributing 

Python-Qt based applications

 Writing Android applications with 
Python and Qt
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Lets put it all together !

So that:
● applications can be written entirely in Python
● Qt/QML can be used for the GUI
● the applications can be easily debugged
● all binary components can be recompiled at will
● the end result is a standalone Google Play 

compatible APK package
● deployment is as easy as possible
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 How it works

the Necessitas project
● Qt4 for Android
● provides Qt libraries compiled for Android 2.2+
● most of Qt functionality is supported, including 

OpenGL acceleration and Qt Quick 1.1
● handles automatic library downloads & 

updates through the Ministro service
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 Python for Android

● provides a Python interpreter for the Python 
code to run in and the Python‑Qt bindings are 
compiled against it

● there are multiple projects providing Python for 
Android, for this initiative, Python from the Kivy 
project was used

–  https://github.com/kivy/python-for-android

https://github.com/kivy/python-for-android
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PySide Python‑Qt bindings

● wraps all public Qt classes for use from Python
● compiled using the Android NDK against the 

Necessitas Qt libraries and Python for Android
● build scripts:

https://github.com/M4rtinK/android-pyside-build-scripts

https://github.com/M4rtinK/android-pyside-build-scripts
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 Optional : Qt Components

● based on MeeGo Qt Components
● provide high level UI components for use in QML
● modified to work with Android screen rotation
● compiled with the Android NDK
● source code available from Gitorious:

https://qt.gitorious.org/~martink/qt-components/martinks-
ineans-qt-components/commits/android
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 What needs to be in the package

● the Python application code & any QML code
● Python & PySide compiled for Android
● Necessitas Java boilerplate & C++ wrapper

– gets libs from Ministro and creates application window

– starts the embedded Python interpreter

● optionally – Qt Components
● as a result, the package has about 15 MB :)
● ...but there are multiple ways to trim it down
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How to create the package

● with the Necessitas Qt creator
–  just press the run button

–  you can get an example project from here:

https://github.com/M4rtinK/android-pyside-example-project

● packages can be also created from the 
command line using qmake and ant

https://github.com/M4rtinK/android-pyside-example-project
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 How everything gets in place on first start

● there are two zip files in the APK
–  one is for the application, the second for libraries

● the boilerplate acquires Qt libraries from 
Ministro and then unpacks both zip files to the 
application folder

● then the application is started
● all subsequent starts are as fast as for normal 

Android applications 
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 How it looks like
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 Not only Android applications
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The previous image shows

● the Mieru manga and comic book reader
–  Python + PySide + QML + Qt Components

https://github.com/M4rtinK/mieru

●  running on:
– Android 

– BlackBerry 10 

– Nokia N900 & N9 

– PC with Ubuntu 12.10

https://github.com/M4rtinK/mieru
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 PySide for Android guide

a detailed guide for building PySide and it to build 
Python application APKs
●  available on the Qt Project Wiki

http://qt-project.org/wiki/PySide_for_Android_guide

–  short URL:

http://bit.ly/Zw6zHf

http://qt-project.org/wiki/PySide_for_Android_guide
http://bit.ly/Zw6zHf
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 The pydroid project

is a really nice project developed by Aaron Richiger
● based on my PySide for Android work but even 

more user/developer friendly
● and MUCH MORE POWERFUL :)
● official website (well, a github repo :) :

https://github.com/raaron/pydroid
● short URL:

http://bit.ly/16CI3Kj

https://github.com/raaron/pydroid
http://bit.ly/16CI3Kj
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 pydroid - features

● effortless setup.py based installation
● automatic project template generation

– QWidget, QML, QtC, MWC, no-MWC, Pyjnius, etc.

● supports both QtCreator based and CLI only  
package generation and deployment

● automatically creates the app & lip zip bundles
● progress bar during first start/installation
● supports pip for adding Python modules to the 

project
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pydroid - features

● support for logging from python directly to the android log 
facility
– which is piped directly to the QtCreator console :)

● fast deployment to an Android device
– 5 seconds from pressing the fast deploy button to application 

finishing startup on device

● bash autocomplete support
● pydroid & project diagnostics

– just run pydroid status
● simple example applications is already available in Google Play

– just search for pydroid
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Installing pydroid

clone from Git
git clone https://github.com/raaron/pydroid.git

install
● sudo python setup.py install

and restart your shell, or else autocomplete will not 
work
● if you want to use command line deployment, don't 

forget to fill in the paths ~/.pydroid/deploy.conf
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Generate an example application

to generate the Qt Components example:
pydroid create example qt_components

● there are also other examples
– QML only, Qwidget, MWC, Pyjnius, etc.

https://github.com/raaron/pydroid.git
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Deploying with Qt Creator

● open the .pro file in the Necessitas Qt Creator
● set architecture of your device
● hit “Run” (or ctrl + r)
● that's it :)
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Future plans -> Qt5 !

● has much improved Android support
– sensors, positioning, JNI interface, QtCreator support

● built-in QtComponents -> QQuick Controls
● canvas based vector drawing
● generally much better performance
● more modular
● more built-in stuff + moduarization = smaller APK
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Qt5 Python bindings

● PySide
● PyOtherSide
● PyQt
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PySide

● Qt4 only, Qt5 is not supported at the moment
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Qt5 - PyOtherSide

● minimal asynchronous Qt5 bindings
– developed by Thomas Perl (THP)

– provide an interface between Python code and QtQuick 
2.0

● implemented as a Python extension & Qt plugin
● very fast startup

– Qt starts first, then starts the embedded Python 
interpreter

– does not need to resolve all function symbols at startup 
like normal Qt bindings
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Qt5 - PyOtherSide

● very small – compiled binary has ~100 kB
– PySide has about 5 MB

● everything can be asynchronous
– Python does it's stuff and calls callback to notify Qt

● image provider support
– images can be loaded from Python data

● project repository:

https://github.com/thp/pyotherside
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Qt5 - PyQt

● PyQt5 added Qt5 support
● provides bindings to all Qt5 classes

– with all the related advantages and downsides

– access to all Qt classes VS slow startup and big size

● compiling PyQt5 for Android might be 
complicated
– PyQt authors mentioned having Android support on 

their roadmap

https://github.com/thp/pyotherside
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Thanks !

● Questions ?

https://github.com/raaron/pydroid
http://thp.io/2011/pyside-android/
https://github.com/ssorgatem/Shiboken/tree/android
https://github.com/ssorgatem/PySide/tree/android
http://hg.microcode.ca/blackberry-py/wiki/Building
http://necessitas.kde.org/
http://qt-project.org/
http://qt-project.org/
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