
1

Writing standalone Qt & Python
applications for Android

Martin Kolman
Red Hat

http://www.modrana.org/pyconpl2013
martin.kolman@gmail.com

@M4rtinK

mailto:martin.kolman@gmail.com

2

Overview

● Android applications
● Writing Android

applications with
Python and Qt

● How it works
● The pydroid project
● Examples
● Acknowledgment

3

What is Android ?

● Android is a very cut-down mobile Linux
distribution developed by Google Inc & co

● it uses a patched Linux kernel
● most of the usual GNU userspace is replaced by

custom tools
● custom incompatible libc called Bionic
● very basic package management
● running on some ~500 million devices globally

4

Android applications

● there are two basic ways types of Android applications
Java based and NDK based

● Java based applications run on the Androids custom
Dalvik Java VM and use Android specific Java classes
– they are not very portable

● NDK based applications are written in C/C++ with a slim
Java wrapper for the UI
– many Android games are NDK based due to better

performance

– Android uses a cut-down C library called Bionic, so porting
libraries from other platforms might not be straightforward

5

Android applications

● applications are distributed in the APK (Android
PacKage) format
– which is just a zip package based on the JAR file format

– no support for cross package dependencies

● the main Android application repository is called Google
Play
– but there are many third party ones, such as Fdroid, Samsung

apps and others

● Android tries to maintain binary compatibility so that
packaged applications should work across different
Android devices and versions

6

● Python has been running on Android for ages
● the Qt graphics library has been available for

Android since early 2011
● there have been some proof of concepts of

Qt‑Python bindings working on Android
● and even some proof of concepts of distributing

Python-Qt based applications

 Writing Android applications with
Python and Qt

7

Lets put it all together !

So that:
● applications can be written entirely in Python
● Qt/QML can be used for the GUI
● the applications can be easily debugged
● all binary components can be recompiled at will
● the end result is a standalone Google Play

compatible APK package
● deployment is as easy as possible

8

 How it works

the Necessitas project
● Qt4 for Android
● provides Qt libraries compiled for Android 2.2+
● most of Qt functionality is supported, including

OpenGL acceleration and Qt Quick 1.1
● handles automatic library downloads &

updates through the Ministro service

9

 Python for Android

● provides a Python interpreter for the Python
code to run in and the Python‑Qt bindings are
compiled against it

● there are multiple projects providing Python for
Android, for this initiative, Python from the Kivy
project was used

– https://github.com/kivy/python-for-android

https://github.com/kivy/python-for-android

10

PySide Python‑Qt bindings

● wraps all public Qt classes for use from Python
● compiled using the Android NDK against the

Necessitas Qt libraries and Python for Android
● build scripts:

https://github.com/M4rtinK/android-pyside-build-scripts

https://github.com/M4rtinK/android-pyside-build-scripts

11

 Optional : Qt Components

● based on MeeGo Qt Components
● provide high level UI components for use in QML
● modified to work with Android screen rotation
● compiled with the Android NDK
● source code available from Gitorious:

https://qt.gitorious.org/~martink/qt-components/martinks-
ineans-qt-components/commits/android

12

 What needs to be in the package

● the Python application code & any QML code
● Python & PySide compiled for Android
● Necessitas Java boilerplate & C++ wrapper

– gets libs from Ministro and creates application window

– starts the embedded Python interpreter

● optionally – Qt Components
● as a result, the package has about 15 MB :)
● ...but there are multiple ways to trim it down

13

How to create the package

● with the Necessitas Qt creator
– just press the run button

– you can get an example project from here:

https://github.com/M4rtinK/android-pyside-example-project

● packages can be also created from the
command line using qmake and ant

https://github.com/M4rtinK/android-pyside-example-project

14

 How everything gets in place on first start

● there are two zip files in the APK
– one is for the application, the second for libraries

● the boilerplate acquires Qt libraries from
Ministro and then unpacks both zip files to the
application folder

● then the application is started
● all subsequent starts are as fast as for normal

Android applications

15

 How it looks like

16

 Not only Android applications

17

The previous image shows

● the Mieru manga and comic book reader
– Python + PySide + QML + Qt Components

https://github.com/M4rtinK/mieru

● running on:
– Android

– BlackBerry 10

– Nokia N900 & N9

– PC with Ubuntu 12.10

https://github.com/M4rtinK/mieru

18

 PySide for Android guide

a detailed guide for building PySide and it to build
Python application APKs
● available on the Qt Project Wiki

http://qt-project.org/wiki/PySide_for_Android_guide

– short URL:

http://bit.ly/Zw6zHf

http://qt-project.org/wiki/PySide_for_Android_guide
http://bit.ly/Zw6zHf

19

 The pydroid project

is a really nice project developed by Aaron Richiger
● based on my PySide for Android work but even

more user/developer friendly
● and MUCH MORE POWERFUL :)
● official website (well, a github repo :) :

https://github.com/raaron/pydroid
● short URL:

http://bit.ly/16CI3Kj

https://github.com/raaron/pydroid
http://bit.ly/16CI3Kj

20

 pydroid - features

● effortless setup.py based installation
● automatic project template generation

– QWidget, QML, QtC, MWC, no-MWC, Pyjnius, etc.

● supports both QtCreator based and CLI only
package generation and deployment

● automatically creates the app & lip zip bundles
● progress bar during first start/installation
● supports pip for adding Python modules to the

project

21

pydroid - features

● support for logging from python directly to the android log
facility
– which is piped directly to the QtCreator console :)

● fast deployment to an Android device
– 5 seconds from pressing the fast deploy button to application

finishing startup on device

● bash autocomplete support
● pydroid & project diagnostics

– just run pydroid status
● simple example applications is already available in Google Play

– just search for pydroid

23

Installing pydroid

clone from Git
git clone https://github.com/raaron/pydroid.git

install
● sudo python setup.py install

and restart your shell, or else autocomplete will not
work
● if you want to use command line deployment, don't

forget to fill in the paths ~/.pydroid/deploy.conf

24

Generate an example application

to generate the Qt Components example:
pydroid create example qt_components

● there are also other examples
– QML only, Qwidget, MWC, Pyjnius, etc.

https://github.com/raaron/pydroid.git

25

Deploying with Qt Creator

● open the .pro file in the Necessitas Qt Creator
● set architecture of your device
● hit “Run” (or ctrl + r)
● that's it :)

26

Future plans -> Qt5 !

● has much improved Android support
– sensors, positioning, JNI interface, QtCreator support

● built-in QtComponents -> QQuick Controls
● canvas based vector drawing
● generally much better performance
● more modular
● more built-in stuff + moduarization = smaller APK

27

Qt5 Python bindings

● PySide
● PyOtherSide
● PyQt

28

PySide

● Qt4 only, Qt5 is not supported at the moment

29

Qt5 - PyOtherSide

● minimal asynchronous Qt5 bindings
– developed by Thomas Perl (THP)

– provide an interface between Python code and QtQuick
2.0

● implemented as a Python extension & Qt plugin
● very fast startup

– Qt starts first, then starts the embedded Python
interpreter

– does not need to resolve all function symbols at startup
like normal Qt bindings

30

Qt5 - PyOtherSide

● very small – compiled binary has ~100 kB
– PySide has about 5 MB

● everything can be asynchronous
– Python does it's stuff and calls callback to notify Qt

● image provider support
– images can be loaded from Python data

● project repository:

https://github.com/thp/pyotherside

31

Qt5 - PyQt

● PyQt5 added Qt5 support
● provides bindings to all Qt5 classes

– with all the related advantages and downsides

– access to all Qt classes VS slow startup and big size

● compiling PyQt5 for Android might be
complicated
– PyQt authors mentioned having Android support on

their roadmap

https://github.com/thp/pyotherside

32

Acknowledgements & sources

● Aaron Richiger for the wonderful pydroid project
● THPs PySide for Android – showing that this is possible
● Adrià Cereto-Massagué – integrated & improved THPs patches for Shiboken and

PySide
● the Android-Python2.7 project – solved the APK bundling issue
● the Kivy project - provides Android-buildable Python 2.7
● the BlackBerry-Py Building PySide guide – I’ve used this as a base when making the

Android build scripts
● the Necessitas project – made Qt on Android possible

– also provides the Necessitas Qt Creator used for by the example project for building standalone
APKs

● Qt-Project – provides the GUI toolkit :)
● PySide – provides the Python-Qt bindings Ineans Qt Components – with small

modifications used in the example application & project

33

Thanks !

● Questions ?

https://github.com/raaron/pydroid
http://thp.io/2011/pyside-android/
https://github.com/ssorgatem/Shiboken/tree/android
https://github.com/ssorgatem/PySide/tree/android
http://hg.microcode.ca/blackberry-py/wiki/Building
http://necessitas.kde.org/
http://qt-project.org/
http://qt-project.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

