
  

Mobile application development with 
QML & PySide

slides: http://www.modrana.org/om2012
example program: https://github.com/M4rtinK/expyside

Martin Kolman, Faculty of Informatics, Masaryk University

http://www.modrana.org/om2012
https://github.com/M4rtinK/expyside


  

What is PySide

● a project that provides Python bindings for Qt
● basically a LGPL alternative to the older PyQt 

project
● PySide recently became part of the Qt Project

● officially available for Fremantle (N900) and 
Harmattan (N9)
● there is an unofficial port for Android
● and of course it also works on desktop :)



  

Advantages

● Python is easy to use :)
● no need to (cross-)compile
● code can be easily tweaked on the go
● in combination with Rsync makes for very rapid 

change-test cycles
● big standard library and boatloads of third-party 

modules



  

Disadvantages

● bindings don't cover all available libraries
● no Qt Creator support
● no Qt 5 support yet



  

Setting up the environment

● on a PC
● install PySide :)
● install Qt Components from the Forum Nokia PPA

● on a mobile device
● N900, N950 and N9 are supported by PySide out of 

the box
● just install the python-pyside metapackage and you 

are ready to go :)
● on the N900 you might need the qt-components-10 

package



  

Basic application harness
Python code

#!/usr/bin/env python

# A simple PySide example

import sys
import os
from PySide.QtGui import *
from PySide.QtDeclarative import *

WINDOW_TITLE = "PySide Example"

# enable running this program from absolute path
os.chdir(os.path.dirname(os.path.abspath(__file__)))

if __name__ == '__main__':
    app = QApplication(sys.argv) # create the application
    view = QDeclarativeView() # create the declarative view
    view.setSource("main.qml")
    view.setWindowTitle(WINDOW_TITLE)
    view.resize(854,480)
    view.show()
    app.exec_()



  

Basic application harness
QML code

import QtQuick 1.1

Rectangle {
    anchors.fill : parent
    Text {
        text: "Hello World"
        anchors.centerIn: parent
    }
}



  

Exporting Python properties to QML

● to export python functions to QML:

1. create a class that instantiates QObject

2. add functions you want to export to this class

3. annotate them

4. instantiate the class an set it as a context 
property of the declarative view

● the property name ins exported to the global QML 
namespace, so watch out for collisions



  

Exporting Python properties to QML
Python property code

class PropertyExample(QObject):
    def __init__(self):
        QObject.__init__(self)
        self.rootObject = None
        #NOTE: the root object is needed only by Python properties
        # that call QML code directly

    @QtCore.Slot(result=str)
    def getDate(self):
        """
        return current date & time
        """
        return str(datetime.datetime.now())

    @QtCore.Slot(str)
    def notify(self, text):
        """
        trigger a notification using the
        Qt Quick Components InfoBanner
        """
  
        #NOTE: QML uses <br> instead of \n for linebreaks
        self.rootObject.notify(text)



  

Exporting Python properties to QML
property export code

    # add the example property
    property = PropertyExample()
    rc.setContextProperty("example", property)



  

Exporting Python properties to QML
QML code

Text {
    text: example.getDate()
    anchors.horizontalCenter: parent.horizontalCenter
}

Button {
    anchors.horizontalCenter: parent.horizontalCenter
    width : 100
    id : startButton
    text : "notification"
    onClicked : {
        example.notify("entry filed content:<br>" + entryField.text)
    }
}



  

Manipulating QML from Python

● instantiated QML Elements can be directly 
manipulated from Python

● the easiest way is probably through the root 
object
● the root object is created from the file that was set 

as the declarative view source at startup, in our 
example this is the main.qml file

● but be careful – this ties Python very closely to 
the (usually ever-changing) QML code



  

Manipulating QML from Python
Python code

def notify(self, text):
    """
    trigger a notification using the
    Qt Quick Components InfoBanner
    """
    rootObject = view.rootObject()
    rootObject.notify(text)



  

Manipulating QML from Python
QML code

InfoBanner {
    id: notification
    timerShowTime : 5000
    height : rootWindow.height/5.0
}

function notify(text) {
    notification.text = text;
    notification.show()
}



  

Notifications

● notifications can be easily implemented using 
the QML InfoBanner element

● the InfoBanner element is instantiated in the 
main.qml file

● there is also a notify(text) function
● this function can be called both from QML and 

from Python code

EX: handling more notifications at once



  

Loading images

● QML supports loading images from files or network
● but what if we want to load an image from raw data 

in memory or do custom image processing ?
● QDeclarativeImageProvider

● provides an interface for loading images to QML
● returns QImage or QPixmap
● does not update the Image.progress property

● reloading an might be a bit problematic due to how 
image caching works



  

Loading images
image provider example

class ImagesFromPython(QDeclarativeImageProvider):
    def __init__(self):
        # this image provider supports QImage,
        # as specified by the ImageType
        QdeclarativeImageProvider.__init__(self,  
QdeclarativeImageProvider.ImageType.Image)

    def requestImage(self, pathId, size, requestedSize):
  # we draw the text provided from QML on the image

        text = pathId    
        # for an example image, PySide logo in SVG is used
        image = QImage("pyside.svg")
        image.scaled(requestedSize.width(),requestedSize.height())
        painter = QtGui.QPainter(image)
        painter.setPen("white")
        painter.drawText(20, 20, text)
        return image



  

Loading images
registering the image provider

provider = ImagesFromPython()
view.engine().addImageProvider("from_python", provider)

# NOTE: view.engine().addImageProvider("from_python", 
# ImagesFromPython())
# doesn't work for some reason



  

Loading images
using the image provider from QML

Image {
    anchors.horizontalCenter: parent.horizontalCenter
    width : 200
    height : 200
    smooth : true
    // NOTE: the image provider name in the Image.source 
    // URL is automatically lower-cased !!
    source : "image://from_python/" + entryField.text
}



  

Persistent configuration

● can be easily achieved on the Python side
● just export a property with properly annotated 

get/set methods
● on the Python side, it can be as simple as 

dictionary that is loaded from file with Marshal 
on startup and saved back on shutdown

● or other “backends” like configparser, 
configObj, csv, sqlite, etc. can be used



  

Simple rapid prototyping

● Python has a big advantage - you don't have to compile 
the source code

● the same source can be used to run an application both 
on your desktop computer or your mobile device

● this can be used for a very rapid on-device testing
● develop anywhere !

● the only thing you need is IP connectivity between your 
desktop/laptop and your mobile device

● basically any wireless AP will do
● also works with the built-in mobile hotspot ! :)



  

Simple rapid prototyping

● requirements
● rsync on your mobile device
● scp might be used as a less-effective alternative
● SSH-PKY authentication (so that you don't have to 

enter the password on every sync)
● the IP address of your computer and your mobile 

device 



  

The rsync script
app_rsync.sh

#!/bin/bash

IP=$1

# NOTE: this deletes any on-device changes to the
# application source files on every sync
# also, the .git folder is not synced (if present)

rsync -avzsh --delete --progress -e 'ssh' my_username@$
{IP}:/home/my_username/coding/app /home/user/coding 
--exclude '.git'



  

The startup script
app_start.sh

#!/bin/bash

cd software/coding/app
python main.py



  

The sync & run script
run_app.sh

#!/bin/sh

# optional automatic IP address detection
#source_ip=`sh get_source.sh`

# place dependent IP addresses
source_ip=192.168.1.2
#source_ip=192.168.0.3
#source_ip=192.168.1.4
#source_ip=192.168.1.5

sh app_rsync.sh $source_ip
#sh temp_rsync.sh $source_ip
sh app_start.sh



  

Installation & usage

● installation
● place the scripts to a convenient folder on your 

mobile device

● usage
● log-in to your mobile device
● set your PC IP in the main script (optional)
● run the the scripts as appropriate



  

Why 3 scripts ?

● better readability
● flexibility – the individual scripts can be used 

separately:
● sync & start the application
● just sync
● just start the application



  

Packaging

● is not really needed during development
● unless you are developing for Harmattan and need 

Aegis tokens

● programs using PySide can be accepted to the 
Nokia store (formerly Ovi Store)
● Python applications already in the store:

– Mieru
– GPodder
– RePho (?)
– and others



  

How to create packages for 
Harmattan & Fremantle

● with PySide assistant

● http://wiki.meego.com/Python/pyside-assistant
● with Khertan's sdist_maemo module

● http://www.khertan.net/softwares/Sdist_Maemo/
● with my packaging script that uses modified 

sdist_maemo and OBS to create Nokia Store-
compatible packages

● http://www.modrana.org/misc/mieru_build_example.zip

● using merlin1991's bdist_hdeb module
● http://forum.meego.com/showthread.php?t=5523



  

PySide applications

● Mieru, RePho, modRana
● https://github.com/M4rtinK

● Gpodder
● https://github.com/gpodder

● gotoVienna
● https://github.com/kelvan/gotoVienna

● AGTL
● https://github.com/webhamster/advancedcaching

https://github.com/M4rtinK
https://github.com/gpodder


  

Thank you !

Questions ? :)

Want to contact me ? :)
Martin Kolman
email: martin.kolman@gmail.com
jabber: m4rtink@jabbim.cz
github: https://github.com/M4rtinK

mailto:m4rtink@jabbim.cz

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31

