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What is PySide

● a project that provides Python bindings for Qt
● basically a LGPL alternative to the older PyQt 

project
● PySide recently became part of the Qt Project

● officially available for Fremantle (N900) and 
Harmattan (N9)
● there is an unofficial port for Android
● and of course it also works on desktop :)



  

Advantages

● Python is easy to use :)
● no need to (cross-)compile
● code can be easily tweaked on the go
● in combination with Rsync makes for very rapid 

change-test cycles
● big standard library and boatloads of third-party 

modules



  

Disadvantages

● bindings don't cover all available libraries
● no Qt Creator support
● no Qt 5 support yet



  

Setting up the environment

● on a PC
● install PySide :)
● install Qt Components from the Forum Nokia PPA

● on a mobile device
● N900, N950 and N9 are supported by PySide out of 

the box
● just install the python-pyside metapackage and you 

are ready to go :)
● on the N900 you might need the qt-components-10 

package



  

Basic application harness
Python code

#!/usr/bin/env python

# A simple PySide example

import sys
import os
from PySide.QtGui import *
from PySide.QtDeclarative import *

WINDOW_TITLE = "PySide Example"

# enable running this program from absolute path
os.chdir(os.path.dirname(os.path.abspath(__file__)))

if __name__ == '__main__':
    app = QApplication(sys.argv) # create the application
    view = QDeclarativeView() # create the declarative view
    view.setSource("main.qml")
    view.setWindowTitle(WINDOW_TITLE)
    view.resize(854,480)
    view.show()
    app.exec_()



  

Basic application harness
QML code

import QtQuick 1.1

Rectangle {
    anchors.fill : parent
    Text {
        text: "Hello World"
        anchors.centerIn: parent
    }
}



  

Exporting Python properties to QML

● to export python functions to QML:

1. create a class that instantiates QObject

2. add functions you want to export to this class

3. annotate them

4. instantiate the class an set it as a context 
property of the declarative view

● the property name ins exported to the global QML 
namespace, so watch out for collisions



  

Exporting Python properties to QML
Python property code

class PropertyExample(QObject):
    def __init__(self):
        QObject.__init__(self)
        self.rootObject = None
        #NOTE: the root object is needed only by Python properties
        # that call QML code directly

    @QtCore.Slot(result=str)
    def getDate(self):
        """
        return current date & time
        """
        return str(datetime.datetime.now())

    @QtCore.Slot(str)
    def notify(self, text):
        """
        trigger a notification using the
        Qt Quick Components InfoBanner
        """
  
        #NOTE: QML uses <br> instead of \n for linebreaks
        self.rootObject.notify(text)



  

Exporting Python properties to QML
property export code

    # add the example property
    property = PropertyExample()
    rc.setContextProperty("example", property)



  

Exporting Python properties to QML
QML code

Text {
    text: example.getDate()
    anchors.horizontalCenter: parent.horizontalCenter
}

Button {
    anchors.horizontalCenter: parent.horizontalCenter
    width : 100
    id : startButton
    text : "notification"
    onClicked : {
        example.notify("entry filed content:<br>" + entryField.text)
    }
}



  

Manipulating QML from Python

● instantiated QML Elements can be directly 
manipulated from Python

● the easiest way is probably through the root 
object
● the root object is created from the file that was set 

as the declarative view source at startup, in our 
example this is the main.qml file

● but be careful – this ties Python very closely to 
the (usually ever-changing) QML code



  

Manipulating QML from Python
Python code

def notify(self, text):
    """
    trigger a notification using the
    Qt Quick Components InfoBanner
    """
    rootObject = view.rootObject()
    rootObject.notify(text)



  

Manipulating QML from Python
QML code

InfoBanner {
    id: notification
    timerShowTime : 5000
    height : rootWindow.height/5.0
}

function notify(text) {
    notification.text = text;
    notification.show()
}



  

Notifications

● notifications can be easily implemented using 
the QML InfoBanner element

● the InfoBanner element is instantiated in the 
main.qml file

● there is also a notify(text) function
● this function can be called both from QML and 

from Python code

EX: handling more notifications at once



  

Loading images

● QML supports loading images from files or network
● but what if we want to load an image from raw data 

in memory or do custom image processing ?
● QDeclarativeImageProvider

● provides an interface for loading images to QML
● returns QImage or QPixmap
● does not update the Image.progress property

● reloading an might be a bit problematic due to how 
image caching works



  

Loading images
image provider example

class ImagesFromPython(QDeclarativeImageProvider):
    def __init__(self):
        # this image provider supports QImage,
        # as specified by the ImageType
        QdeclarativeImageProvider.__init__(self,  
QdeclarativeImageProvider.ImageType.Image)

    def requestImage(self, pathId, size, requestedSize):
  # we draw the text provided from QML on the image

        text = pathId    
        # for an example image, PySide logo in SVG is used
        image = QImage("pyside.svg")
        image.scaled(requestedSize.width(),requestedSize.height())
        painter = QtGui.QPainter(image)
        painter.setPen("white")
        painter.drawText(20, 20, text)
        return image



  

Loading images
registering the image provider

provider = ImagesFromPython()
view.engine().addImageProvider("from_python", provider)

# NOTE: view.engine().addImageProvider("from_python", 
# ImagesFromPython())
# doesn't work for some reason



  

Loading images
using the image provider from QML

Image {
    anchors.horizontalCenter: parent.horizontalCenter
    width : 200
    height : 200
    smooth : true
    // NOTE: the image provider name in the Image.source 
    // URL is automatically lower-cased !!
    source : "image://from_python/" + entryField.text
}



  

Persistent configuration

● can be easily achieved on the Python side
● just export a property with properly annotated 

get/set methods
● on the Python side, it can be as simple as 

dictionary that is loaded from file with Marshal 
on startup and saved back on shutdown

● or other “backends” like configparser, 
configObj, csv, sqlite, etc. can be used



  

Simple rapid prototyping

● Python has a big advantage - you don't have to compile 
the source code

● the same source can be used to run an application both 
on your desktop computer or your mobile device

● this can be used for a very rapid on-device testing
● develop anywhere !

● the only thing you need is IP connectivity between your 
desktop/laptop and your mobile device

● basically any wireless AP will do
● also works with the built-in mobile hotspot ! :)



  

Simple rapid prototyping

● requirements
● rsync on your mobile device
● scp might be used as a less-effective alternative
● SSH-PKY authentication (so that you don't have to 

enter the password on every sync)
● the IP address of your computer and your mobile 

device 



  

The rsync script
app_rsync.sh

#!/bin/bash

IP=$1

# NOTE: this deletes any on-device changes to the
# application source files on every sync
# also, the .git folder is not synced (if present)

rsync -avzsh --delete --progress -e 'ssh' my_username@$
{IP}:/home/my_username/coding/app /home/user/coding 
--exclude '.git'



  

The startup script
app_start.sh

#!/bin/bash

cd software/coding/app
python main.py



  

The sync & run script
run_app.sh

#!/bin/sh

# optional automatic IP address detection
#source_ip=`sh get_source.sh`

# place dependent IP addresses
source_ip=192.168.1.2
#source_ip=192.168.0.3
#source_ip=192.168.1.4
#source_ip=192.168.1.5

sh app_rsync.sh $source_ip
#sh temp_rsync.sh $source_ip
sh app_start.sh



  

Installation & usage

● installation
● place the scripts to a convenient folder on your 

mobile device

● usage
● log-in to your mobile device
● set your PC IP in the main script (optional)
● run the the scripts as appropriate



  

Why 3 scripts ?

● better readability
● flexibility – the individual scripts can be used 

separately:
● sync & start the application
● just sync
● just start the application



  

Packaging

● is not really needed during development
● unless you are developing for Harmattan and need 

Aegis tokens

● programs using PySide can be accepted to the 
Nokia store (formerly Ovi Store)
● Python applications already in the store:

– Mieru
– GPodder
– RePho (?)
– and others



  

How to create packages for 
Harmattan & Fremantle

● with PySide assistant

● http://wiki.meego.com/Python/pyside-assistant
● with Khertan's sdist_maemo module

● http://www.khertan.net/softwares/Sdist_Maemo/
● with my packaging script that uses modified 

sdist_maemo and OBS to create Nokia Store-
compatible packages

● http://www.modrana.org/misc/mieru_build_example.zip

● using merlin1991's bdist_hdeb module
● http://forum.meego.com/showthread.php?t=5523



  

PySide applications

● Mieru, RePho, modRana
● https://github.com/M4rtinK

● Gpodder
● https://github.com/gpodder

● gotoVienna
● https://github.com/kelvan/gotoVienna

● AGTL
● https://github.com/webhamster/advancedcaching

https://github.com/M4rtinK
https://github.com/gpodder


  

Thank you !

Questions ? :)

Want to contact me ? :)
Martin Kolman
email: martin.kolman@gmail.com
jabber: m4rtink@jabbim.cz
github: https://github.com/M4rtinK

mailto:m4rtink@jabbim.cz
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